The pro-hypertrophic basic helix-loop-helix protein p8 is degraded by the ubiquitin/proteasome system in a protein kinase B/Akt- and glycogen synthase kinase-3-dependent manner, whereas endothelin induction of p8 mRNA and renal mesangial cell hypertrophy require NFAT4.
نویسندگان
چکیده
Renal disease is a common complication of diabetes. The initiating events in diabetic nephropathy are triggered by hyperglycemia and, possibly, advanced glycation end products. Subsequently, excess levels of vasoactive peptides (especially endothelin-1 (ET-1)) accumulate in the diabetic kidney, and there is evidence that these peptides mediate many of the pathophysiological changes associated with diabetic renal disease. These changes include an excess deposition of extracellular matrix proteins into the glomerular basement membrane and renal mesangial cell hypertrophy. Our transcriptional profiling studies have revealed that the p8 gene, which encodes a putative basic helix-loop-helix protein, is strongly induced in ET-1-treated renal mesangial cells and in an animal model of diabetic nephropathy. RNA interference experiments indicated that the p8 gene is required for ET-1-induced mesangial cell hypertrophy. Here, we show that the p8 polypeptide is a phosphoprotein subject to constitutive degradation by the ubiquitin/proteasome system. This degradation is mediated by phosphatidylinositol 3-kinase and protein kinase B/Akt. By contrast, stabilization of the p8 protein requires glycogen synthase kinase-3. Finally, short interfering RNA-mediated RNA interference experiments indicated that ET-1-stimulated mesangial cell hypertrophy and p8 mRNA induction require the NFAT4 transcription factor. Thus, p8 levels in the cell are likely maintained by a balance between signal-dependent transcriptional induction and proteolysis.
منابع مشابه
Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملHelix-loop-helix protein p8, a transcriptional regulator required for cardiomyocyte hypertrophy and cardiac fibroblast matrix metalloprotease induction.
Cardiomyocyte hypertrophy and extracellular matrix remodeling, primarily mediated by inflammatory cytokine-stimulated cardiac fibroblasts, are critical cellular events in cardiac pathology. The molecular components governing these processes remain nebulous, and few genes have been linked to both hypertrophy and matrix remodeling. Here we show that p8, a small stress-inducible basic helix-loop-h...
متن کاملTHE EFFECT OF ENDURANCE TRAINING ON PROTEIN KINASE-B AND MECHANICAL TARGET OF RAPAMYCIN IN THE LEFT VENTRICLE OF THE HEART OF DIABETIC RATS INDUCED BY STREPTOZOTOCIN AND NICOTINAMIDE
Background: The pathway of insulin messengers is so important that diabetes can lead to disruption of this pathway. However, the aim of this study was to investigate the effect of 8 weeks of endurance training on protein Kinase-B (PKB or AKT) and mechanical target of rapamycin (mTOR) in the left ventricle of the heart of diabetic rats induced by streptozotocin and nicotinamide. Methods: In thi...
متن کاملLithium stabilizes the CCAAT/enhancer-binding protein alpha (C/EBPalpha) through a glycogen synthase kinase 3 (GSK3)-independent pathway involving direct inhibition of proteasomal activity.
CCAAT/enhancer-binding protein alpha (C/EBPalpha), a basic leucine zipper transcription factor, is involved in mitotic growth arrest and differentiation. Given that numerous proteins involved in cell cycle regulation are degraded via the ubiquitin-proteasome system, we examined whether the C/EBPalpha protein is degraded via a proteasomal mechanism. In cycloheximide-treated BALB/MK2 keratinocyte...
متن کاملLithium Stabilizes the CCAAT/Enhancer-binding Protein (C/EBP ) through a Glycogen Synthase Kinase 3 (GSK3)-independent Pathway Involving Direct Inhibition of Proteasomal Activity*
CCAAT/enhancer-binding protein (C/EBP ), a basic leucine zipper transcription factor, is involved in mitotic growth arrest and differentiation. Given that numerous proteins involved in cell cycle regulation are degraded via the ubiquitin-proteasome system, we examined whether the C/EBP protein is degraded via a proteasomal mechanism. In cycloheximide-treated BALB/MK2 keratinocytes we found that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 20 شماره
صفحات -
تاریخ انتشار 2004